Publications
A list of references on the evolution of out technology

References
- S. Bindu, et al., An in vivo Evaluation of Ultra-fine Grained Titanium Implants. Journal of Materials Science & Technology, 2009. 25(4): p. 556-560.
- Y. Estrin, et al., Accelerated growth of preosteoblastic cells on ultrafine grained titanium. Journal of Biomedical Materials Research Part A, 2009. 90A(4): p. 1239-1242.
- D. Geblinger, L. Addadi, and B. Geiger, Nano-topography sensing by osteoclasts. Journal of Cell Science, 2010. 123(9): p. 1503-1510.
- S. Faghihi, et al., Cellular and molecular interactions between MC3T3-E1 pre-osteoblasts and nanostructured titanium produced by high-pressure torsion. Biomaterials. 2007. 28(27): p. 3887-3895.
- D. Khang, et al., The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials, 2008. 29(8): p. 970-983.
- T.N. Kim, et al., In vitro biocompatibility of equal channel angular processed (ECAP) titanium. Biomedical Materials, 2007. 2(3): p. S117-S120.
- E. Lamers, et al., The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition. Biomaterials, 2010. 31(12): p. 3307-3316.
- T.C. Lowe, Metals and alloys nanostructured by severe plastic deformation: commercialization pathways, Journal of Metals, Volume 58, Number 4, (2006).
- T.C. Lowe and R.Z. Valiev, Producing nanoscale microstructures through severe plastic deformation, Journal of Metals, Volume 52, Number 4, (2000).
- A. Ponche, M. Bigerelle, and K. Anselme, Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 1: Physico-chemical effects. Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine, 2010. 224(H12): p. 1471-1486.
- G.J. Raab, R.Z. Valiev, T.C. Lowe, and Y.T. Zhu, Continuous processing of ultrafine grained aluminum by ECAP-Conform, Materials Science and Engineering, Volume A382, Number 30, (2004).
- D.V. Shtansky, et al., The Influence of Elemental Composition and Surface Topography on Adhesion, Proliferation and Differentiation of Osteoblasts. Biologicheskie Membrany, 2010. 27(4): p. 325-330.
- V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, and R.Z. Valiev, Two step SPD processing of ultrafine-grained titanium, NanoStructured Materials, Volume 11, Number 7 (1999).
- R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev, Plastic deformation of alloys with submicron-grained structure, Materials Science and Engineering, Volume A137 (1991).
- R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation, Materials Science and Engineering, Volume A168, (1993).
- R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, Volume 45, Number 103 (2000).
- R.Z.Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation, Journal of Materials Research, Volume 17, Number 5, (2002).
- R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science, Volume 51 (2006).
- R.Z. Valiev, et al., Nanostructured titanium for biomedical applications, Advanced Biomaterials, DOI: 10.1002/adem.200800026 (2008).
- C. Yao, et al., Anodized Ti and Ti(6)Al(4)V Possessing Nanometer Surface Features Enhances Osteoblast Adhesion. Journal of Biomedical Nanotechnology, 2005. 1(1): p. 68-73.
- C. Yao, E.B. Slamovich, and T.L. Webster, Titanium nanosurface modification by anodization for orthopedic applications, in Nanoscale Materials Science in Biology and Medicine, C.T.B.E.A. Laurencin, Editor 2005. p. 215-220.
- X.L. Zhu, et al., Cellular reactions of Osteoblasts to micron- and submicron-scale porous structures of titanium surfaces. Cells Tissues Organs, 2004. 178(1): p. 13-22.